

AL8279 Core Application Note

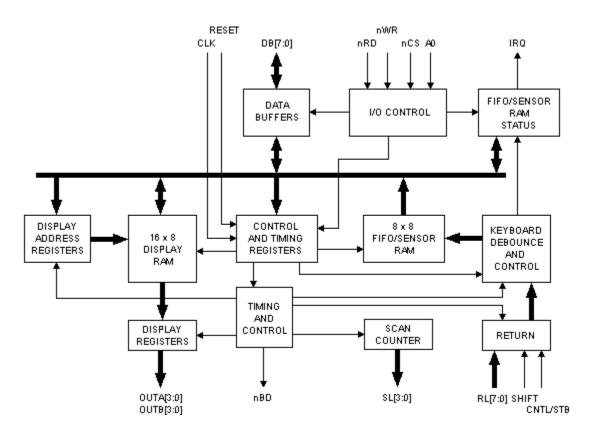
Rev. [6/2012] 6-19-2012

AL8279 Core Application Note

Table of Contents

General Information	.3
Features	
Block Diagram	.3
Contents	. 4
Behavioral	. 4
Synthesizable	. 4
Test Vectors	. 4
Interface	.5
Implementation Data	
Deliverables	7

General Information


The AL8279 core is the VHDL model of the Intel™ 8279 Programmable Keyboard/Display Interface device designed for use with Intel microprocessors. The keyboard portion provides a scanned interface to 64-contact key matrix while the display portion provides an interface for popular display technologies (e.g. LED).

Features

- Functionally based on the Intel 8279 device
- Simultaneous keyboard display operations
- Scanned keyboard and sensor modes
- Strobed input entry mode
- 8-character keyboard FIFO
- 2-key lockout or N-key rollover with contact debounce
- Dual 8- or 16-numerical display
- Single 16-character display RAM
- Programmable scan timing and mode
- Interrupt output on key entry

Block Diagram

The basic structure of the AL8279 core is shown below:

Rev. [6/2012] www.aldec.com

AL8279 Core Application Note

Contents

Behavioral

The behavioral model is designed for the functional simulation only and it cannot be synthesized or implemented into FPGAs. The behavioral model contains the following files:

• AL8279.vhd - the top level of the AL8279 behavioral model

Synthesizable

See the <u>Deliverables</u> section of this document for further details.

Test Vectors

See the <u>Deliverables</u> section of this document for further details.

Interface

The pinout of the AL8279 core has not been fixed to specific FPGA I/O, allowing flexibility with a user's application. Signal names are shown in the table.

Signal Name	Signal Direction	Polarity	Description	
DB[7:0] ¹⁾	INOUT	-	CPU data bus	
CLK	IN	-	system clock	
RESET	IN	HIGH	A high signal on this pin resets the device	
CS	IN	HIGH	Chip Select	
A0	IN	-	Buffer address	
nRD, nWR	IN	LOW	Input/output read/write	
IRQ	OUT	-	Interrupt request	
SL[3:0]	OUT	-	Scan lines	
RL[7:0]	IN	-	Return line	
SHIFT	IN	-	Shift	
CNTL/STB	IN	-	Control/Strobed Input mode	
OUTA[3:0], OUTB[3:0]	OUT	-	Outputs	
nBD	OUT	LOW	Blank display	

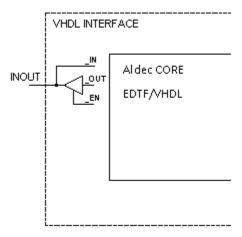
NOTES:

1. Each bidirectional pin is defined in the core interface as three separated VHDL ports. Optionally, using the VHDL Interface (See the <u>Deliverables</u> section of this document for further details), it can be merged to one bidirectional VHDL port.

Implementation Data

The core has been synthesized and implemented to different types of reprogrammable devices. The model has been verified using the simulation environment and tested on the real hardware.

Software							
Synthesis Tool	Synopsys FPGA Express™ build 2.1.3.3220						
Implementation Tools	Xilinx Foundation™ 2.1i SP2, Altera MAX+plusII™ 9.21, Quartus™ 1.0 A						
Verification Tool	Active-HDL™ 3.5 build 437						
Hardware							
Vendor	Xi	ilinx	Altera				
Device Family	4K	Virtex™	FLEX™ 10K	APEX™ 20K			
Target Device	XC4062XLA-9	XCV300-4	EPF10K100-1	APEX20			
Area ^{*)}	231CLBs (10%)	soon come	soon come	soon come			
System Clock fmax	12MHz	soon come	soon come	soon come			


Deliverables

After you request the desired compiled synthesizable core, Aldec delivers the following files:

- Both technology-dependent EDIF (AL8279_CORE.EDN) and VHDL (AL8279_CORE.VHD) netlists
- Aldec VHDL Interface (AL8279.VHD)
- User-Guide and Application Notes
- Sample designs

Usually Aldec delivers both EDIF and VHDL netlists for customers who order the synthesizable model. The EDIF netlist is used for the place and route process and VHDL is the post-synthesis netlist used for the simulation only. Of course, both netlists are technology-dependent, because they are created after the synthesis where the customer needs to specify a vendor, target family, etc.

Aldec provides optionally a VHDL interface for its synthesizable models for these customers who need bidirectional ports in the core interface. See the picture below:

Aldec can provide also a set of VHDL test benches for their cores. Usually they are sold at the additional charge.

Source codes are sold on a case-by-case basis.

